微清医疗成立于2011年,定位于眼科影像全球高端品牌,专注于眼健康影像诊疗设备的研发和产业化, 以自主核心硬件为基础,集成人工智能和信息技术,针对眼科、内分泌、体检和妇幼等医疗机构, 提供超广角激光眼底相机、超广角激光眼底造影机、SKY全眼影像平台等核心技术产品,是国内领先的眼健康诊疗设备和数据平台。
微清医疗系列产品已成功申报各类专利100余项,获授权专利46项, 软件著作权4项、PCT专利3项,获中国NMPA、美国FDA和欧盟CE等海外认证。 微清超广角共聚焦眼底成像系统,于2023年斩获科技部国家重点研发计划专项及BCEIA金奖, 2024年荣获国家级专精特新小巨人企业称号、2024年度眼科学中国十大原创进展等多项殊荣。 截至目前微清产品已覆盖60多个国家和地区,服务于全球1500多家医院等医疗机构。
Shen, Y., Ye, X., Zhou, X., Yu, J., Zhang, C., He, S., Wu, J., Guan, H., Xu, G. and Shen, L., 2024.
In vivo assessment of cone loss and macular perfusion in children with myopia.
Scientific Reports, 14 (1), p.26373.
https://www.nature.com/articles/s41598-024-78280-yWu, S., Zheng, F., Sui, A., Wu, D. and Chen, Z., 2024.
Sodium-iodate injection can replicate retinal and choroid degeneration in pigmented mice: Using multimodal imaging and label-free quantitative proteomics analysis.
Experimental Eye Research, 247, p.110050.
https://www.sciencedirect.com/science/article/pii/S0014483524002719Jiang, L., Wang, F., Zheng, R. and Li, C., 2023, November.
Cross-Domain Images Generation of Fundus Fluorescence Angiography Based on Generative Adversarial Networks with Self-Attention Mechanism.
In 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) (pp. 6-10). IEEE.
Zhang, Y., Zheng, R., Hu, X., Li, C. and Wang, F., 2023, May.
An SVM-based method for classifying retinal lesion vessels.
In Second International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2023) (Vol. 12642, pp. 702-707). SPIE.
Liao, N., Li, C., Jiang, H., Fang. A., Zhou, S. and Wang, Q., 2016.
Neovascular glaucoma: a retrospective review from a tertiary center in China.
BMC ophthalmology, 16, pp.1-6.
Li, Chao hong, Hao Xian, Wenhan Jiang, Changhui Rao, 2012.
Measurement error of Shack-Hartmann wavefront sensor.
In Topics in Adaptive Optics. IntechOpen.
Hofer, H., Sredar, N., Queener, H., Li, C. and Porter, J., 2011.
Wavefront sensorless adaptive optics ophthalmoscopy in the human eye.
Optics express, 19(15), pp. 14160-14171.
Ivers, K.M., Li, C., Patel, N., Sredar, N., Luo, X., Queener, H., Harwerth, R.S. and Porter, J., 2011.
Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging.
Investigative ophthalmology & visual science, 52(8), pp.5473-5480.
Li, C., Sredar, N., Ivers, K.M., Queener, H. and Porter, J., 2010.
A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system.
Optics express, 18(16), pp.16671-16684.
Li, Chaohong, et al, 2008.
Measuring statistical error of Shack-Hartmann wavefront sensor with discrete detector arrays.
Journal of Modern Optics, 55 (14), pp. 2243-2255.
Li, Chao hong., Xian, H., Jiang, W. and Rao, C., 2008.
Wavefront error caused by centroid position random error.
Journal of Modern Optics, 55 (1), pp. 127-133.
Li, Chao hong., Xian, H., Jiang, W. and Rao, C., 2007.
Performance analysis of field-of-view shifted Shack-Hartmann wavefront sensor based on splitter.
Applied Physics B, 88, pp.367-372.
Chao-Hong, L., Hao, X., Wen-Han, J. and Chang-Hui, R., 2007.
Analysis of wavefront measuring method for daytime adaptive optics.
Li, C., Xlan, H., Rao, C. and Jiang, W., 2006.
Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system.
Optics letters, 31(19), pp. 2821-2823.